High-spectral resolution simulation of polarization of skylight:Sensitivity to aerosol vertical profile

نویسندگان

  • Jing Zeng
  • Qingyuan Han
  • Jun Wang
چکیده

[1] A vector radiative transfer model was used in conjunction with the line-by-line radiative transfer model and the database of high-resolution transmission (HITRAN) molecular absorption to simulate the degree of linear polarization of skylight in cloud-free conditions. Differences between simulated and measured polarization data in highspectral resolution are found to be within 1% after aerosol scattering and gas absorptions are carefully considered. Limiting experiments are conducted at wavelengths around 0.760–0.765 mm O2-A absorption band for the same columnar aerosol optical thickness but different aerosol profiles. Results showed that the degree of linear polarization of skylight at surface varies strongly and is sensitive to the vertical change of tropospheric aerosol mass (or extinction) as the wavelengths approach to the edge of O2-A absorption band. However, such sensitivity is minimal at all wavelengths when the aerosol composition or single scattering properties are vertically homogeneous. This study suggests that the polarization data can be used together with radiance data to constrain the simulation of vertical distribution of aerosol composition in chemistry transport models. Citation: Zeng, J., Q. Han, and J. Wang (2008), High-spectral resolution simulation of polarization of skylight: Sensitivity to aerosol vertical profile, Geophys. Res. Lett., 35, L20801, doi:10.1029/2008GL035645.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Geostatistical Seismic Inversion Based on Spectral Simulation with Deterministic Inversion: A Case Study

Seismic inversion is a method that extracts acoustic impedance data from the seismic traces. Source wavelets are band-limited, and thus seismic traces do not contain low and high frequency information. Therefore, there is a serious problem when the deterministic seismic inversion is applied to real data and the result of deterministic inversion is smooth. Low frequency component is obtained fro...

متن کامل

System Simulation of Spaceborne and Airborne High Spectral Resolution Lidar for Aerosol Monitoring

Atmospheric aerosols play very important roles in climate change and air particulate pollution. Due to their highly variable optical and physical properties as well as to short atmospheric lifetimes and large spatial and temporal gradients, the aerosol impact on climate models and air pollution is really a complex task. Lidars based on elastic scattering have been largely used to measure aeroso...

متن کامل

AERL - A Small Satellite for Measurement of Aerosol Properties over Land Surfaces

Accurate information on concentrations and physical properties of atmospheric aerosol over land surfaces is of great importance for air pollution control and climate research. The aerosol distributions over land surfaces are characterized by high spatial variability, depending on topography, meteorological conditions, and the distribution and magnitude of aerosol sources and sinks. Global aeros...

متن کامل

Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (hsrl) Measurements and the Calipso Vertical Feature Mask

The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 18 field missions across North America since 2006. The lidar measurements include scale-invariant aerosol parameters that vary with aerosol typ...

متن کامل

Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space

Aerosols are an important factor in the Earth climatic system and they play a key role in air quality and public health. Observations of the oxygen A-band at 760 nm can provide information on the vertical distribution of aerosols from passive satellite sensors that can be of great interest for operational monitoring applications with high spatial coverage if the aerosol information is obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008